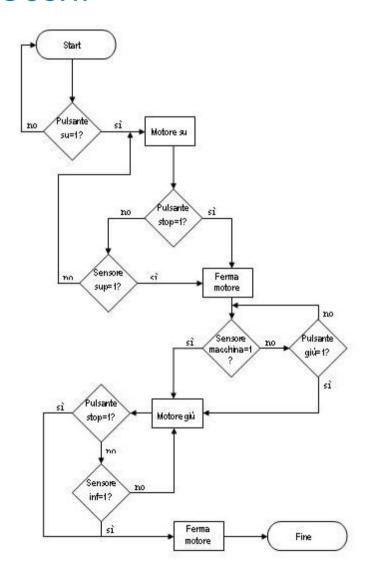


Introduzione alla programmazione

Flusso di lavoro

- Per la costruzione di un programma è consigliabile seguire i seguenti passaggi:
 - Risoluzione schematica del problema (schema a blocchi)
 - Allocazione degli I/O
 - Scelta del PLC e configurazione
 - Scrittura dei programmi
 - Test
 - Produzione della documentazione (fase di rilascio)


Esempio di programmazione

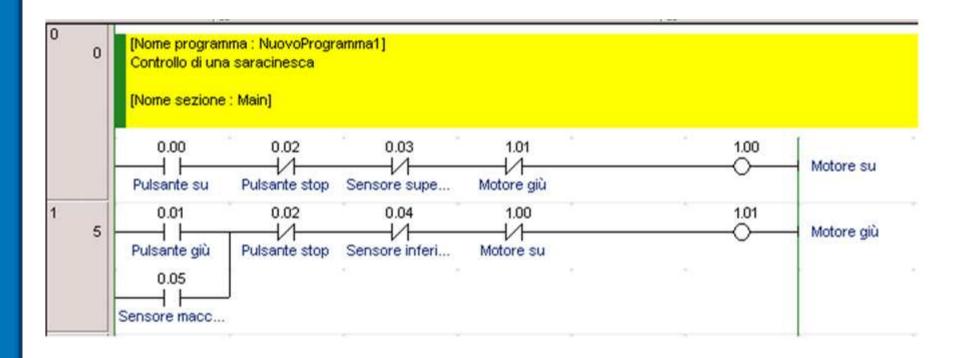
- Si vuole definire il funzionamento di un sistema di controllo per saracinesche:
 - La saracinesca può essere aperta, chiusa e arrestata tramite dei pulsanti
 - Quando un sensore rileva che il camion è entrato completamente nel garage, la saracinesca si chiude

 Prevedere altri due sensori da utilizzare come finecorsa per la saracinesca

Schema a blocchi

Allocazione I/O e scelta del PLC

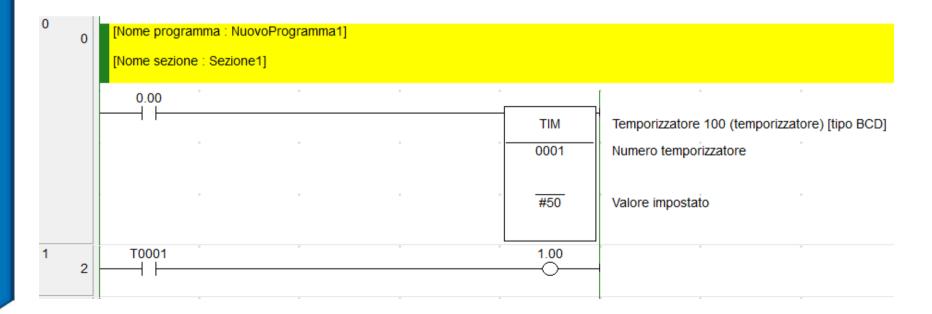
- Il sistema necessita di 6 ingressi e 2 uscite
- Utilizziamo un PLC compatto o modulare?
- Potremmo utilizzare il CP1L-L10 poiché ha 10 punti di I/O divisi in 6 ingressi e 4 uscite
- Tuttavia utilizzeremo un CJ2M poiché consideriamo che il sistema verrà ampliato in futuro
- Per gli ingressi scegliamo un collegamento di tipo PNP mentre per le uscite scegliamo un modello con uscite a relè


Configurazione del PLC e variabili

- Il PLC da utilizzare sarà costituito da:
 - Alimentatore
 - CJ2M-CPU11
 - Modulo ingressi digitali (16 punti per modulo)
 - Modulo uscite a relè (8 punti per modulo)
- Variabili del progetto:

Nome	Tipo dati	Indirizzo / Valore	Posizione rack	Utilizzo	Commento
* Pulsante_su	BOOL	0.00		Lavoro	Pulsante su
• Pulsante_giù	BOOL	0.01		Lavoro	Pulsante giù
* Stop	BOOL	0.02		Lavoro	Stop
 Sensore_superiore 	BOOL	0.03		Lavoro	Sensore superiore
 Sensore_inferiore 	BOOL	0.04		Lavoro	Sensore inferiore
 Sensore_macchina 	BOOL	0.05		Lavoro	Sensore macchina
Motore_su	BOOL	1.00		Lavoro	Motore su
' Motore_giù	BOOL	1.01		Lavoro	Motore giù

Esempio di programmazione


Linguaggi di programmazione

- I principali linguaggi di programmazione sono:
 - Ladder
 - Lista istruzioni (mnemonico)
 - Testo strutturato
 - Diagrammi SFC

Ladder

- Il Ladder è un linguaggio di programmazione grafico dove troviamo contatti, bobine e funzioni
- E' il linguaggio di programmazione più utilizzato per la sua semplicità d'interpretazione ed è supportato da tutti i PLC Omron.

Lista istruzioni (mnemonico)

 Il linguaggio in lista istruzioni è un linguaggio mnemonico molto compatto e consente di programmare il PLC con una vera e propria sequenza di istruzioni

• Esempio:

LD 0.00

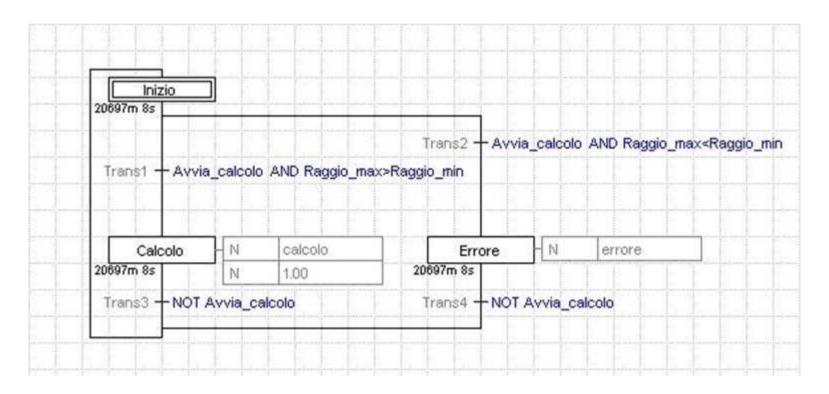
OUT 1.00

LD 0.01

TIM 0000 #10

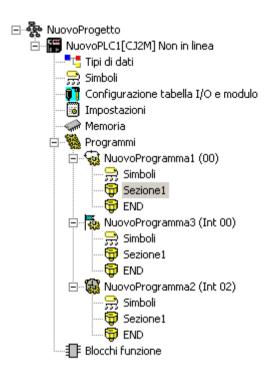
ANDNOT T0000

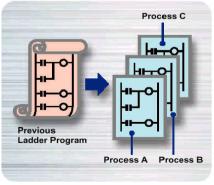
OUT 1.01


Testo strutturato

- Il testo strutturato è un linguaggio di programmazione simile al Pascal
- E' particolamente indicato per l'elaborazioni di algoritmi e calcoli

Diagrammi SFC


- E' un linguaggio di programmazione grafico
- L'SFC è utilizzato soprattutto per il controllo di sequenze



Suddivisione dei programmi

- Nelle famiglie CP1 e CJ:
 - Il programma può essere suddiviso in 32 Task ciclici (128 nel CJ2) e 256 Task ad interrupt
 - I Task ciclici possono essere attivati o disattivati dall'interno del programma
 - All'interno dei task possono essere utilizzate subroutine (1.024 in totale)
 - Gli Interrupt, siano essi hardware o software, sono gestiti da Task dedicati
- L'esecuzione dei Task è sequenziale
- La memoria del PLC è comune a tutti i Task

